Morphological impacts on flood peak damping (assessment with the FEM-Method)

Presenting Author, Haspel, D.¹,
Co-Authors, Schober, B.¹, Habersack, H.¹

Affiliation:
¹Christian Doppler Laboratory for Advanced Methods in River Monitoring, Modelling and Engineering; Institute of Water Management, Hydrology and Hydraulic Engineering; Department of Water, Atmosphere and Environment; University of Natural Resources and Life Sciences, Vienna, Austria
Overview

1. Introduction and current situation
2. Objectives
3. Methods
4. Catchment area
5. Results
6. Discussion
7. Conclusion
Introduction and current situation

EU-floods directive → preservation and restoration of natural inundation areas

Daily consumption of land for construction and traffic

Percentage of construction and traffic areas of the potential permanent settlement area

Pres. Author: Haspel, D. Co-Authors: Schober, B., Habersack, H.
Objectives

- Testing and improving of a method to evaluate and compare floodplains.
- Qualitative assessment of floodplain retention effectiveness
- Support for land use planning
FEM-Methode

HYDROLOGY
- Parameter: Flood peak reduction (ΔQ)
- Parameter: Flood wave translation (Δt)

HYDRAULICS
- Parameter: Waterlevel (WSP)
- Parameter: Flow velocity (v)
- Parameter: Shear stress (τ)
- Parameter: Specific discharge

Pres. Author: Haspel, D. Co-Authors: Schober, B., Habersack, H.
Danube catchment

Investigation area

(Shannon, 2010)
Catchment area

Catchment area of the river Mur

Length: 300 KM
Catchment: 10,000 KM²

(Internationales Hochwasserprognosemodell Mur)

Pres. Author: Haspel, D. Co-Authors: Schober, B., Habersack, H.
Catchment area

Catchment area of the river Mur

Length: 300 KM
Catchment: 10,000 KM²

(Internationales Hochwasserprognosemodell Mur)

Pres. Author: Haspel, D. Co-Authors: Schober, B., Habersack, H.
Pres. Author: Haspel, D. Co-Authors: Schober, B., Habersack, H.
Pres. Author: Haspel, D, Co-Authors: Schober, B., Habersack, H.
Results Hydrologic effect

Floodplain map

\[\Delta Q = 2.1 \, \text{m}^3/\text{sec} \]
\[\Delta T = 34 \, \text{min} \]

\[\Delta Q = 0.3 \, \text{m}^3/\text{sec} \]
\[\Delta T = 11 \, \text{min} \]
Results Hydrologic effect DQ

Absolute peak reduction [m³/s]

Positioning at the river [KM]

Pres. Author: Haspel, D. Co-Authors: Schober, B., Habersack, H.
Results Hydrologic effect DQ
Results Hydrologic effect DQ

Percentage of the cumulative effect of peak discharge

95% of the cumulative effect
5% of the cumulative effect

Positioning at the river [KM]
Results Hydrologic effect Dt

Flood wave translation

Discharge

Time

15 min threshold

Pres. Author: Haspel, D. Co-Authors: Schober, B., Habersack, H.
Results Hydraulic effect

Floodplain map
Results Hydraulic effect

Water level difference

Positioning at the river [KM]

W. l. difference [m]

10 cm boundary
Intersection of Hydrological and Hydraulic parameters

<table>
<thead>
<tr>
<th>Hydrology</th>
<th>Hydrologic</th>
<th>W - Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔQ</td>
<td>ΔT</td>
<td>W - Level</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

The „better“ parameter decides

Should be preserved

Pres. Author: Haspel, D. Co-Authors: Schober, B., Habersack, H.
Intersection of Hydrological und Hydraulic parameters

<table>
<thead>
<tr>
<th>Positioning at the river</th>
<th>Peak dis. Reduction</th>
<th>Temporal translation</th>
<th>Water level change</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\Delta Q_{\text{rel/Reach}}$</td>
<td>Δt</td>
<td>ΔWSP</td>
<td></td>
</tr>
<tr>
<td>F.288_01L</td>
<td>3.90</td>
<td>9.28</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>F.287_01R</td>
<td>2.67</td>
<td>7.25</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>F.286_01L</td>
<td>4.62</td>
<td>11.08</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>F.285_01L</td>
<td>18.42</td>
<td>33.95</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>F.285_01R</td>
<td>3.03</td>
<td>7.89</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>F.284_01R</td>
<td>3.03</td>
<td>4.28</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>F.283_01L</td>
<td>8.38</td>
<td>20.13</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>F.282_01R</td>
<td>2.75</td>
<td>9.38</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>F.281_01R</td>
<td>0.87</td>
<td>2.78</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>F.281_01L</td>
<td>5.78</td>
<td>10.55</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>F.280_01R</td>
<td>10.33</td>
<td>20.55</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>F.279_01L</td>
<td>16.33</td>
<td>32.58</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>F.278_01R</td>
<td>2.89</td>
<td>7.68</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>F.275_01L</td>
<td>0.07</td>
<td>0.00</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>F.271_01R</td>
<td>0.65</td>
<td>0.00</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>F.269_01L</td>
<td>0.58</td>
<td>2.35</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>F.267_01R</td>
<td>2.31</td>
<td>0.23</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>F.257_01L</td>
<td>3.03</td>
<td>2.78</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>F.256_01L</td>
<td>5.13</td>
<td>1.50</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>S.256_01L</td>
<td>3.47</td>
<td>1.50</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>F.255_01L</td>
<td>1.73</td>
<td>0.00</td>
<td>0.09</td>
<td></td>
</tr>
</tbody>
</table>
Discussion

Floodplain size

Relative peak discharge reduction

Floodplain 395_01L

Floodplain 358_01L

Pres. Author: Haspel, D. Co-Authors: Schober, B., Habersack, H.
Conclusion

• The method can be used in everyday practice
• Qualitative assessment of floodplain retention effectiveness
• Support for land use planning
Thank you for your attention!
Daniel Haspel

Christian Doppler Laboratory for Advanced Methods in River Monitoring, Modelling and Engineering
Institute of Water Management, Hydrology and Hydraulic Engineering
Department of Water, Atmosphere and Environment
University of Natural Resources and Life Sciences, Vienna, Austria

Muthgasse 107, A-1190 Wien
daniel.haspel@boku.ac.at
Tel.: +43 1 3189900 102
Discussion