Improved environmental flows for river restoration – a case study from the Lesser Caucasus, Azerbaijan

Farda Imanov¹, Harald Leummens², Anar Nuriyev¹, Saida Zeynalova¹

¹ Baku State University, Faculty of Geography
² UNDP/GEF “Reduction of transboundary degradation in the Kura Aras river basin”

European River Restoration Conference, 5th Edition
Celebrating successes and addressing challenges

11-13 September 2013, Vienna, Austria
Pilot river basins
Pressure: water abstraction

Water intake facility of Zurnabad HPP
Gancachay river

Irrigation network, Gancachay river basin
Pressure: industry & mining

Diffuse & point sources of pollution

Industrial waste

Tailing dam
Goshkarchay River

Iron ore mining
Qoshkarchay River
Flood protection

Physical and morphological changes of water bodies

Flood protection constructions on river bank

Reservoirs with volume > 2 million m³
Impacts from human activities

- Change in natural flow regime of rivers.
- Deterioration of water quality and ecological state.
- Drying up of river flow, from excessive withdrawal for irrigation, and storage in reservoirs.

Monthly water discharges at Berd (upstream, blue) and Oysuzlu (downstream, red), Tovuzchay River.
E-flow approach

Former Soviet Union

- Medium-sized rivers – maintain annual flat flow rate equal to 75% probability of lowest average monthly flow

New proposal

1. Specific for each month, no annual flat rate.
2. Based on natural flow, before anthropogenic impact.
3. Observed monthly Q_{min} as 1$^\text{st}$ approximation for E-flow value.
4. Correction ΔQ_1: statistical analysis of long-term changes in monthly discharge. *Account for Climate Change*
5. Correction ΔQ_2: statistical analysis of intra-monthly variation coefficient. *Account for natural variability*

Final formula: \[Q_{ef} = Q_{min} - \Delta Q_1 + \Delta Q_2 \]
Proposed new E-flow approach

In Practice

1. Calculate long-term average monthly flow for anthropogenic impact period (Q_{observed}).

2. Compare monthly Q_{observed} with monthly Q_{ef}.

3. If monthly $Q_{\text{observed}} \geq Q_{\text{ef}}$, then E-flow is provided, otherwise not.

4. Water available for extraction: (Q_{abstract}) based on Q_{observed}, corrected for Q_{ef}:

$$Q_{\text{abstract}} = Q_{\text{observed}} - Q_{\text{ef}}$$
New E-flow – practical application

Gancachay upstream

Water discharge (m3/sec)

Month

<table>
<thead>
<tr>
<th>Month</th>
<th>Q observed</th>
<th>Q ef</th>
<th>Q 75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
New E-flow – practical application

Shamkirchay middle section

Water discharge (m3/sec)

Month

Q observed
Q ef
Q 75%

Month
Recommendations

- **E-flow hydrographs** for pilot tributaries were calculated from statistical analysis of long-term discharge time series.

- Proposal prepared to adopt **new government regulations**, to guide water abstraction licensing for economic use.

- E-flow only (first) part of solution. Recognized need for:
 - *Addressing land use* in floodplains and beyond.
 - *Active restoration of aquatic ecosystems.*
 - Improved *science & monitoring.*
Thank you for your attention