Urban riparian forests and their hydrological ecosystem services

Vilhar Urša, Kermavnar Janez, Erika Kozamernik

26 - 27 May 2021
EUROPEAN RIVER SYMPOSIUM
Urban riparian forests and their hydrological ecosystem services

Ecological processes
- Canopy interception
- Water flow
- Water quality
- Air pollution,…

Factors
- Precipitation
- Forest structure
- Soil properties
- Parent material,…

Indicators
- Canopy interception
- Topsoil water infiltration
- Soil water holding capacity,…
Urban riparian forests and their hydrological ecosystem services

- Linking Ecosystem Services & Human Well-being to indicators

- Measure by Ecologists
- Value by Economist
- Utilize by Decision-Makers

Source: Millennium Ecosystem Assessment (2005)
Urban riparian forests and their hydrological ecosystem services

The City of Ljubljana

Area: 275 km²
Population: 276,091
Population density: 1,004 indiv. km⁻²
Forest cover: 41 %
Canopy precipitation interception of riparian forests

Transect:
Mixed forest ↔ Riparian pine forest ↔ Floodplain hardwood forest

Kermavnar & Vilhar, 2017
Urban forests and their hydrological ecosystem services

Transect:

- **Mixed forest in city center**
- **Riparian pine forest**
- **Floodplain hardwood forest**

Dystric cambisols

Fluvisol (WRB 2007)
Urban forests and their hydrological ecosystem services
Average throughfall, stemflow and canopy interception from 2008 to 2013

MIXED FOREST IN CITY CENTER

RIPARIAN PINE FOREST

FLOODPLAIN HARDWOOD FOREST

% of bulk precipitation

Leaved | Leafless | Year | Interception | Stemflow | Throughfall

18% | 4% | 7%

a) Mixed forest
b) Riparian pine forest
c) Floodplain hardwood forest

Relative frequency

Rainfall intensity (mm/h)

< 0.25 | 0.26 - 1.0 | 1.1 - 4.0 | 4.1 - 16.0 | 16.1 - 50.0

Winter | Summer
Urban forests and their hydrological ecosystem services

The City of Ljubljana

- Two important subsurface water-bodies:
 1. aquifer Ljubljansko polje and
 2. Ljubljansko Barje aquifer system.

- 102 potential water sources and springs:
 - 5 located outside the forest,
 - 36 in the forest,
 - 61 on the forest edge.
Assessment of hydrological ecosystem services of riparian vegetation for a potential drinking water source

Different land use categories

the Glinščica river study area (1665 ha) in the City of Ljubljana, Slovenia:

- **Forest:** 44.7 %
- **Built-up areas:** 31.4 %
- **Grassland and abandoned agricultural land:** 16.0 %
- **Agricultural land:** 7.5 %
- **Wetlands, marshes and flood plains:** 1.2 %
- **Lakes and rivers:** < 1 %
Assessment of hydrological ecosystem services of riparian vegetation for a potential drinking water source

Water protection zones of the potential drinking water source

water protection zone VVO I: Forest cover 76%
Assessment of hydrological ecosystem services of riparian vegetation for a potential drinking water source

<table>
<thead>
<tr>
<th>Process</th>
<th>Indicator</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Soil water holding capacity (g cm(^{-3}))</td>
<td></td>
</tr>
<tr>
<td>Water purification</td>
<td>Max. NO(_3) concentration in the groundwater of Ljubljana aquifer (mg l(^{-1}))</td>
<td>ICP Forests Database 2014, Life+ EMoNFUr Database, Ausec et al. 2005, Loose et al. 2010</td>
</tr>
<tr>
<td></td>
<td>Soil Bulk Density (g cm(^{-3}))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C/N ratio of soil</td>
<td>Jamnik et al. 2003, Ivančič & Vončina 2013, Koleša & Planinšek 2013, Loose et al. 2010</td>
</tr>
<tr>
<td>Air pollution reduction</td>
<td>PM(_{10}) - Annual concentration (µg m(^{-3}))</td>
<td>Ivančič & Vončina 2013, Koleša & Planinšek 2013, Loose et al. 2010, Ogrin 2007a, Ogrin 2007b</td>
</tr>
<tr>
<td></td>
<td>PM(_{10}) - No. of days above daily threshold 50 µg m(^{-3})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO(_2) - Annual concentration (µg m(^{-3}))</td>
<td></td>
</tr>
</tbody>
</table>

Relative values for indicators (Koschke et al. 2012):

- From 0 – no relevant contribution
- to 1 – maximum possible contribution
Assessment of hydrological ecosystem services of riparian vegetation for a potential drinking water source
Assessment of hydrological ecosystem services of riparian vegetation for a potential drinking water source
Urban riparian forests and their hydrological ecosystem services

Conclusions

- Every riparian ecosystem is unique (structural traits, soil features and microsite conditions) – difficult to draw general conclusions about their hydrological ecosystem services.

- Canopy precipitation partitioning in riparian forests is strongly influenced by tree species composition, canopy cover and growing stock (i.e., tree dimensions) as well as rainfall spatial distribution and intensity.

- Riparian forests act as a natural filter for pollutants in the air, soil and water with their dense tree crowns, litter and forest soils.

- Hydrologically oriented forest management measures to improve riparian ecosystem services in urbanized watersheds represent a nature-based solution.
Acknowledgments

• Postdoc applied research project, Target Research Project in the Target Research Program “Competitiveness of Slovenia 2006-2013”,
• Master thesis at Faculty of Civil engineering, University of Ljubljana,
• Public forestry service, financed by Ministry of Agriculture and the Environment, Republic of Slovenia,
• ICP Forests and Intensive Monitoring of Forest Ecosystems in Slovenia (Public Service)
• Life+ EMoNFUr Project „Establishing a monitoring network to assess lowland forest and urban plantation in Lombardy and urban forest in Slovenia” (LIFE10 ENV/IT/000399)
• The Slovenian Research Agency, Research Core Funding No. 0404-501; the Programme group “Forest biology, ecology and technology” and basic research project J2-1749
• FPS COST Action FP1204 Green Infrastructure approach: linking environmental with social aspects in studying and managing urban forests
• Interreg project PROLINE-CE, co-funded by ESRR.
Urban riparian forests and their hydrological ecosystem services

Vilhar Urša, Kermavnar Janez, Erika Kozamernik

26 - 27 May 2021
EUROPEAN RIVER SYMPOSIUM