CIRCULAR ECONOMY APPROACH TO RIVER POLLUTION BY AGRICULTURAL NUTRIENTS WITH USE OF CARBON-STORING ECOSYSTEMS

Wiktor Kotowski, Ewa Jabłońska, Marek Giergiczny

University of Warsaw
Introduction
Question: how much does it cost and are people willing to pay for it?
Catchment upscaling of WBZs (modeling-based)

Article

Catchment-Scale Analysis Reveals High Cost-Effectiveness of Wetland Buffer Zones as a Remedy to Non-Point Nutrient Pollution in North-Eastern Poland

Ewa Jabłońska 1,* D, Marta Wiśniewska 1, Pawel Marcinkowski 2 D, Mateusz Grygoruk 2 D, Craig R. Walton 3, Dominik Zak 3,4 D, Carl C. Hoffmann 4, Søren E. Larsen 4, Michael Trepel 5 and Wiktor Kotowski 1 D

Jabłońska et al., 2020, Water, IF=2.544
Narew

rivers in subcatchments
► Restoring WBZ along all river courses in upper Narew catchment (5% of PL) would reduce 33%–82% of N and 41%–87% of P at costs of about 171 million EUR.

► Restoring polygonal WBZs alone (88.500 ha peatlands and 2.400 ha floodplains) would reduce 11%–30% of N and 14%–42% of P load at cost of 8.9 million EUR

Jabłońska et al., 2020, *Water*, IF=2.544
WTP Choice experiment: People in Poland, Germany and Denmark support river and WBZ restoration

Giergiczny et al., submitted to AMBIO
Summary

► WBZs are ecologically and economically effective

► WBZs are wanted

► Knowledge base exists

► Acceptance as mainstream societal innovation needed