Challenges in reaching healthy rivers and sustainable hydropower - 27<sup>th</sup> of May 2021, European River Symposium



**Towards sustainable hydropower in Norway** - by modern ecological design of measures and mode of operation





Jo Halvard Halleraker Chief engineer (NEA) and guest scientist (NTNU)



# Half-full or half empty?

- Status and outlooks
- Management tools
- Political signals and priorities
- Emerging good examples
- Ambitious level
- Norway vs. other countries







1000

0

Ы

ี ห ี ห

F

9

L Y S

ж н

B

Ч

2

В S  $\supset$ ₽ ES

8

## The Norwegian HP portfolio





<u>Source;</u> <u>NVE (2020) and Halleraker et al (2021)</u>

### Norwegian experiences, R&D and handbooks – environmental design to mitigate HP impacts





Laboratorium for ferskvannsøkologi og innlandsfiske (LFI)

# Mitigation measures to reduce hydropower impacts in the RBMP's

- RBMPs adopted, with adjustments, by the Ministry (July 2016)
  - 387 water bodies specified in decision
  - Flow measures in more than 50 HP watercourses by 2033
  - Estimated production loss: 1.1 -1.7 TWh (Apr 1-1.5 % of the total production)
- Political signals on hydropower and biodiversity from parliament (2016)
  - Increase revision of terms (to enable minimum flow release)
  - Modernise legal possibilities for mitigation requirements

逊



#### Mitigating impacts from hydropower in priority water bodies by 2021-2033

| River basin districs | Flow     | Other    |       |
|----------------------|----------|----------|-------|
|                      | measures | measures | Total |
| Glomma/Västerhavet   | 35       | 33       | 68    |
| Vest-Viken           | 35       | 56       | 91    |
| Agder                | 17       | 8        | 25    |
| Rogaland             | 2        | 1        | 3     |
| Hordaland            | 10       | 13       | 23    |
| Sogn/Fjordane        | 13       | 48       | 61    |
| Møre/Romsdal         | 12       | 10       | 22    |
| Trøndelag            | 8        | 10       | 18    |
| Nordland             | 16       | 23       | 39    |
| Troms                | 8        | 21       | 29    |
| Finnmark             | 4        | 4        | 8     |
| Norway               | 160      | 227      | 387   |

Norwegian Ministry of Climate and Environment

Ref. Pedersen/Hamnaberg (2018). A Norwegian approach to determining the significant adverse effects for GEP - Hydro Power, Brussel, 20 Apr 2018.

## All emerging good practice ?

|                             |                                            | Alta                                 | Surna                              | Storelva,<br>Blekvatnet            |
|-----------------------------|--------------------------------------------|--------------------------------------|------------------------------------|------------------------------------|
| icense River charact.       | Key species                                | Atlantic salmon                      | Atlantic salmon                    | A. salmon, Seacharr                |
|                             | Impacted river                             | > 10 km with NSR                     | > 10 km with NSR                   | 5 + 2 km<br>(anadroumose)          |
|                             | Priority<br>HP name                        | <u> </u>                             | <u> </u>                           | <u> </u>                           |
|                             | First operation                            | 1987                                 | 1968                               | 1952                               |
|                             | Modernised license                         | Test regime - after<br>R&D           | Royal Resolution -<br>2021 (March) | Royal Resolution<br>2019 (Sept)    |
|                             | Туре                                       |                                      |                                    |                                    |
| HP charact                  | Head                                       | 185 m                                | 400 m                              | 92 m                               |
|                             | MW (GWh)                                   | 150 (762)                            | 127 (< 893)                        | 1.2 (4.7)                          |
|                             | Max turbine Q                              | 96                                   | 38                                 | 1.8                                |
| Flow mitigation<br>measures | Environmental (base)flow                   | 16 - 45 m³/s                         | 15 3/s                             | 0 (residual flow)                  |
|                             | By-passed reach                            | Not required (short)                 | New measures from 2021             | 0 (residual flow)                  |
|                             | Fish migration flow                        | Yes                                  | Yes                                | Not considered?                    |
|                             | By-pass valve                              | Yes                                  | Yes                                | Yes (2019)                         |
|                             | Operational restrictions<br>(hydropeaking) | Yes - very strict<br>up/down         | Yes - downramping<br>(specified)   | Yes - gradually (not<br>specified) |
| nys-chem<br>leasures        | Multiple intakes                           | Yes to mimick natural ice/water temp |                                    | Not considered?                    |
| ish migration aid           |                                            | Dam above natural<br>barrier         | Dam above natural<br>barrier       | Not required<br>(but relevant)     |

<u>\_\_\_\_</u>

Vannkraftkonsesjoner som kan revideres innen 2022 Nasjonal gjennomgang og forslag til prioritering





Source; <u>WISE dashboard</u>

# **Towards sustainable mitigations in Norway**



### **Promising**

- Several best practise examples in place or in process
  - Environmental design of salmon rivers
  - Fish migration aids (safe up/down)
- Acknowledging «new» impacts that need mitigation
  - Supersaturation
  - Water temp/ice cover
- Intensified revision of terms
  - Focus on mitigating HP impacts
  - More Eflows than prior to 2013



continuity for fish





Mitigation for sediment alteration

Mitigation for rapidly changing low flow

Mitigation for

flows

Mitigation for physico-chemical alteration

Mitigation for



- Modern licenses enabling implementation of monitoring and HP mitigation (without impact on use) still pending in many licenses
- Lack of updated national WFD HP guidelines after 2016
- Regulated lakes and "ordinary" riverdependent biodiversity?





Emerging good practise





Compensating with fish stocking

Compensating habitat loss with fish stocking

## **Thanks for listening - Questions?**



#### **#N - POTENTIALLY LICENSES UP FOR REVISION**



År



Miljodirektoratet.no