

Paludiculture and rivers

Wendelin Wichtmann

Natural status of a growing fen. Example: percolating mire (until ~ 1770)

Intensively used, deeply drained fen since ~ 1970)

Rewetting of peatlands

Two options:

- leave the site to its own devices → natural development
- implement paludiculture → regular management
 - →→ provision of ecosystem services with different focuses

Paludiculture, productive use of wet peatlands*

Agricultural or silvicultural use of wet and rewetted peatlands

- → spontaneously grown or cultivated biomass from wet peatlands is used under conditions in which the peat is conserved or even newly formed
- → allows the re-establishment and maintenance of additional ecosystem services of wet peatlands

*Wichtmann et al. 2016

Paludiculture is

Peat preservation + agriculture/silviculture

→ wise use of peatlands

What are the main requirements

- Site conditions (e.g. fen peatlands in temperate zone)
 - permanent wet conditions in which the peat is conserved or even newly formed
 - →low emissions of greenhouse gases and nutrients
- Agriculture
 - Paradigm shift from drainage to management of rewetted peatlands
 - Vegetation: spontaneously grown or cultivated plant species
 - → productive use of biomass

Plants that thrive in temperate wet peatlands

Gramineous, mosses or arboreal vegetation

Nitrogen fluxes (kg N ha⁻¹ a⁻¹) in fen peatlands in Northern Germany (Trepel et al. 2000, Schleuß et al. 2002, Schrautzer 2004)

Vegetation type	Sedge reed	Intensive grassland
utilisation	no	3 cuts
Medium water table	-10	-50
deposition	20	20
ferilization	0	160
mineralisation	30	200
Sum of inputs	50	480
export by harvest	0	200
Denitrification	20	80
N-leaching	5	20
Sum of outputs	25	300
N-saldo	25	180
Evaluation	Peat formation	Degradation and eutrophication

If the sedges are harvested once a year, the saldo will even be negative

Mix of different land use options in a rewetted polder

Management / Harvesting

One step – bundles

Two steps – chopped biomass

Three steps – round bales

Products from reeds (Quality Reed and Cattail)

- Bundles for roofing
- Culms for mats production
- Construction boards
- Insulation material
- o Form bodies
- 0

Options for energetic utilisation

- o Round bales
- Pellets
- Briquettes
- → Direct burning
- Silage for biogas
- o Bio-char
- o BTL
- Bio-refinery
- 0

A field study of Paludiculture plant species

on rewetted/wet organic and mineral soils

Typha latifolia

Phragmites australis

Typha latifolia

Phragmites australis

rewetted organic soils

rewetted mineral soils

Biomass production 10-30 t dm (ha-1 y-1)
Nutrient removal potential N 100-600 kg • P 20-80 kg • K 50-450 kg (ha-1 y-1)
N:P ratio T. latifolia N:P 5-9 • P. australis N:P 8-25

Harvest period Summer, Autumn, Winter Stand age younger < 3 years > older Soil characteristics broad range

Providing different Ecosystem-Services

is the driving force for implementation of Paludiculture

- Production services biomass for
 - material and energetic use
 - use as fodder or food (comestibles)
- Regulation services
 - Soil protection
 - Site adapted biodiversity (nature near habitats)
 - Water quality protection (retention of nutrients)
 - Water quantity (harmonisation of discharge)
 - Climate protection (mitigation of GHG emissions)
 - Climate adaptation (resilience to flooding)
 - Archives (landscape and human history)

Wet livelyhoods in Iraq: https://static.messynessychic.com/wp-content/uploads/2014/11/paradiselost.jpg

Many thanks for your attention