Improving WFD status at the catchment scale: The role of Natural Flood Management

David Hetherington^{1,2}, Alex Nicholson¹ and Paul Quinn²

 ¹ – Arup, Central Square, Forth Street, Newcastle Upon Tyne, NE13PL, UK
² – Newcastle University, Department of Civil Engineering, Newcastle upon Tyne, Tyne and Wear NE1 7RU

October 2014 European River Restoration Centre Conference, Vienna.

Running order

- 1) Sustainable Catchment Management
- 2) NFM
- **3)** NFM links to WFD
- 4) NFM Experience at Belford
- 5) Conclusions
- 6) Mini Workshop

(Barriers and enablers by geography)

By restoring damaged rivers are we focussing on the symptoms, rather than the cause?

Sustainable Catchment Management (for WFD)

- "Working With Natural Processes";
- As far as possible, restoring the catchment in its natural state;
- Where its not possible restore, look to mimic or replicate (or over-naturalise?);
- Taking advantage of natural recovery, vegetative development and geomorphological <u>change;</u>
- Become more resilient to Floods, Droughts and Geomorphological change;

WFD aspects related to NFM

- The "Catchment Waterbody"
 - Hydromorphology;
 - Water Quality;
 - Ecology.
- WFD Mitigation Measures (non-exhaustive list):
 - Physical Restoration;
 - Remeander, Regrade, Reconnect rivers.
 - Sediment Management;
 - Buffer Strips, alter land use regime, fencing,
 - Alter Flow Regime;
 - Ensure appropriate baseline; flow manipulation;

NFM benefits for WFD

- Hydromorphology

- Reduced low flows and "naturalisation" of flood peak and frequency;
- Improved habitat diversity and dynamism in restored reaches;
- More wetland and backwater habitat;
- Improved floodplain connectivity;

- Water Quality

- Increased residence time of waters +
- Increased vegetation and surface area =
- Increased natural treatment and filtration

- Sediment Management

- Reduced/naturalised energy levels and sediment delivery;
- Reduced velocities and increased deposition/vegetation;
- Increased vegetation and "locking away" of sediment;
- Interaction with farms to maintain features and reuse sediment.

Flooding in Belford

Unnatural rates of run off and sediment delivery due to agriculture impacting on all 3 WFD elements (hydromorphology, water quality and ecology)

Mitigation Explained

Runoff Attenuation Features (RAFs):

Key design attributes of RAFs:

- •easily accommodated in the landscape;
- •do not impact on farming;
- •typically small (<500m³), or located within a ditch or small stream;
- •designed as an extension of farming and land drainage (i.e. not solely flood engineering projects);
- •provide multiple benefits, e.g. nutrient transport (Barber & Quinn, 2012)

RAF types – Soil interception bund (RAF-11)

RAF types – Soil interception bund (RAF-11)

- RAF-11 disconnecting rapid runoff in steep arable field 490m³
- Palmer 2012 estimated 0.99 tonnes of sediment were retained in feature, the equivalent of 91 kg ha⁻¹.

RAF types – Leaky barriers (RAF-0)

Photo provided by Mark Wilkinson

RAF types – Leaky barriers (RAF-0)

Photo provided by Mark Wilkinson

RAF types – Large Woody Debris (RAF-7)

RAF types – Offline ponds (RAF-1)

RAF types – Offline ponds (RAF-1)

RAF types – Offline ponds (RAF-1)

Features built in Belford and estimates of typical capacity and cost. (Consultancy and research costs are not included)

Feature type	Number built	Typical min, max storage m ³	Estimated cost
Overland flow interception	5	300-1000	1K-5K
Online ditch features	9	50-150	1K-3K
Offline ponds	5	200-3000	2K-6K
Large woody debris	8	50-150	1K-3K
Other opportunistic sites	3	100-3000	1K-10K
TOTAL	30	Estimate for Belford 8,000m ³	£70K-100K

Where should a RAF be located?

From: Quinn, P., O'Donnell, G., Nicholson, A., Wilkinson, M., Owen, G., Jonczyk, J., Barber, N., Hardwick, M., & Davies, G. (2013). Potential use of Runoff Attenuation Features in small rural catchments for flood mitigation: Evidence from Belford, Powburn and Hepscott. Joint Newcastle University, Royal Haskoning and Environment Agency Report. Retrieved from

http://research.ncl.ac.uk/proactive/belford/newc astlenfmrafreport/reportpdf/June%20NFM%20 RAF%20Report.pdf

Get the right feature in the right place. In the field, in the ditch, in the small channel... Offline ponds for larger channels and any opportunistic sites

ARUP

Multi-pond Plot 30_RAFs_v550_2009_07 3.5 3.0 **Removal of** "artificial" peak and 2.5 hydromorphological restoration? 2.0 Discharge (m³ /s) 1.5 1.00.5 0.0>30% reduction -02009-07-18 00:00 Date

NFM simulated hydrographs:

Summary

- NFM is a sustainable way of managing runoff & has low cost and offers multiple benefits;
- Disconnection of runoff pathways at source reduces flood peaks locally and captures sediment. Maintenance is needed to preserve pond volume.
- The <u>network of RAFs provides downstream benefits</u>.
- Intrinsic WFD benefits of NFM for all 3 elements;
- More research is needed on the specific / quantified benefits of NFM for WFD (requiring risk aversity and a "leap-of-faith".
- Why are we not doing more NFM?.....

Workshop task

What are your key barriers to NFM implementation?

•Take 10 coloured dots each;

•Place dots against listed barriers (as many as you like if you feel a barrier is important);

•Add a post it note (with a comment) to barriers if you think that it particularly applies to your country;

•Add post it notes to the solutions section if you have ideas;

•Keep talking....!!

Results will be summarised and circulated afterwards.

