River basin connectivity restoration in Finland

Jukka Jormola Finnish Environment Institute SYKE

ECRR General Members Meeting Wageningen 13.-14. November 2018

Contents

- Conflicting interest: hydropower fish
 - Post-war policy: Energy need loss of salmon rivers
 - Now: Regulatory energy value of minimum flows
- Policy change: From stockings to natural reproduction
- Research on fish passes, downstream migration and environmental flows
- Problems in permit renewals
- Are fish passes enough? compensation of habitats

Degradation of the ecological state of rivers Example: River Oulujoki, Finland in the 1920's

- Upmost free rapids
- Route for tar transportation
- Famous for salmon fishing

SYKE

Utilization of River Oulujoki for hydro power after 1930's

- The total elevation 120 m was dammed by 7 power plants
- Salmon was lost
- Compensation only by stocking to the sea
- One fish pass in the lowest powerplant Merikoski in Oulu city

The only fish pass at River Oulujoki

- A fish pass at Merikoski powerplant was opened 2003
- Promblem: lack of spawning sites because of dams
- What have the salmon to do in the totally dammed river?

Photo: Panu Orell

Fish pass window

National fish pass strategy 2012

- Reviving endangered and weakened migrative fish stocks
- Changing policy from stockings to natural reproduction
- Priority river basins were named
- Rivers with
 - vanished salmon stocks
 - endangered lake salmon stock
 - endangered sea trout stocks
- The most "hopeless" rivers like Oulujoki were left out

Implementation of the fish pass strategy by the governmental programme 2017-2018

- Fish passes by state money (not as permit requirement)
- Restoration of some reproduction areas

Opinions of the programme

- Good: 8 new fish passes
- Bad: all of them are technical
- Mainly migration of salmon is considered
- Compentation habitats and other species is **not** promoted in fish pass projects
- Downstream migration and mortality in powerplants not yet solved, there is some pilot research

Restoration of ancient estuary side channels of R. Oulujoki in Oulu City 2018

 New habitats and increased flow year round for the reproduction of sea trout

Example of a new side channel as habitat Imatra urban brook 2015, R. Vuoksi

Constructed channel with 300/ 150 litres/sec Touristic landscape values

Fish monitoring 2016-2017 KAS ely-centre, SYKE

- High densities of brown trout
- Also small natural fish species
- High survival rate, 75 % of first - second summer juveniles
- Enough nourishment
- Production of trout smolts

5 times greater/area than in natural rivers

Site	2016 0+	2017 1+	2017 0+
1	63	13	64
2	76	42	3
3	17	62	0
4	41	19	131
5	3	17	17
Average	40	30.6	43

Examples in Europe

- Biggest constructed reproduction channel: Rheinfelden, Rhine
- 1 km, 10 35 m³/s
- 34 000 fish, 33 species 2012

 Long bypass channels, Danube 10 km, 10 m³/s

Examples from Canada Production of juveniles in compensative channels

- No-net-loss of habitats is required in the legislation, impacts are evaluated
- We have a lot to learn

Dam removals

Sågarsfors, Siuntionjoki 2006

- Dam of a small hydro power plant was demolished
- Voluntary buying and stopping the use of the power plant

Mikko Koivurinta

SYKE

Ongoing projects

- Cities have decisions to remove dams, to revive their rivers for migrative fish and recreation, SYKE is participating in two
- Tikkurilankoski dam, Vantaa city, removal 2018-2019

Municipal power companies have made decisions to stop small power plants

- Tourujoki power plant, Jyväskylä city, removal 2019-2020
- A new rapid with 13 m elevation will be constructed
- Visions of trout, recreation and tourism won the idea of reneweble energy

Ramboll

Lahnasenkoski dam, River Hiitolanjoki

- Vantaa Energy made the decision 2017 to sell the powerplant- no value for PR anymore
- The dam will be partly demolished 2019-2020
- Helps the revival of lake salmon, migrating from Ladoga Lake, Russia

Conclusions

- Finland has a principally good strategy for reviving continuity and fish stocks – still only the aspect of migration (connectivity)
- Modernicing old hydropower permits is a big problem
- Awereness for the need of reviving lost fish stocks has risen lately
- Municipalities recognice ecosystem services of free rivers
- Results of the first compensative habitats are promising not yet applied widely
- Implementation of WFD is **not** taken seriously
 - Requirements for Heavily modified water bodies
 - Legislation for compensation still on volyntary basis
 - Environmental flows

Ο

• No net loss of diversity